Mageia Bugzilla – Attachment 10794 Details for
Bug 24411
Error: CUDA kernel compilation failed
Home
|
New
|
Browse
|
Search
|
[?]
|
Reports
|
Requests
|
Help
|
Log In
[x]
|
New Account
|
Forgot Password
nvidia cuda 10 spec file
nvidia-cuda-toolkit10.spec (text/x-matlab), 10.48 KB, created by
Giuseppe Ghibò
on 2019-02-26 21:23:11 CET
(
hide
)
Description:
nvidia cuda 10 spec file
Filename:
MIME Type:
Creator:
Giuseppe Ghibò
Created:
2019-02-26 21:23:11 CET
Size:
10.48 KB
patch
obsolete
>%define __jar_repack %nil >%define driver_ver 410.48 >%define run_ver 24817639 >%define cuda_major 10.0 > >%define _enable_debug_packages %{nil} >%define debug_package %{nil} > >Summary: NVIDIA CUDA runtime libraries >Name: nvidia-cuda-toolkit >Version: 10.0.130 >Release: %mkrel 1 >Source0: https://developer.nvidia.com/compute/cuda/%{cuda_major}/Prod/local_installers/cuda_%{version}_%{driver_ver}_linux >Source2: nvidia >Source10: nvvp.desktop >Source11: nsight.desktop >Patch0: cuda-nsightcompute-fix-smem.patch >License: Freeware >Group: Development/Other >Url: http://www.nvidia.com/cuda/ >Recommends: nvidia >= %{driver_ver} >BuildRequires: imagemagick >BuildRequires: jpackage-utils >ExclusiveArch: x86_64 > ># We don't require installation of the NVIDIA graphics drivers so that ># folks can do CUDA development on systems without NVIDIA hardware. > ># A library, libcudainj.so, was introduced in CUDA 4.1, which depends ># on libcuda.so. It is not needed to compile CUDA programs, though. ># python(abi) auto-require is triggered by runant.py script somewhere ># inside Eclipse plugins used by NVVP. >%global __requires_exclude libcuda.so.1|devel\\(libcuda\\)|devel\\(libcuda\\(64bit\\)\\)|python\\(abi\\) >%global __provides_exclude libcairo.so.2 > >%description >NVIDIA® CUDA⢠is a general purpose parallel computing architecture >that leverages the parallel compute engine in NVIDIA graphics >processing units (GPUs) to solve many complex computational problems >in a fraction of the time required on a CPU. It includes the CUDA >Instruction Set Architecture (ISA) and the parallel compute engine in >the GPU. To program to the CUDA⢠architecture, developers can, today, >use C++, one of the most widely used high-level programming languages, >which can then be run at great performance on a CUDA⢠enabled >processor. Support for other languages, like FORTRAN, Python or Java, >is available from third parties. > >This package contains the libraries and attendant files needed to run >programs that make use of CUDA. > >%package devel >Summary: NVIDIA CUDA Toolkit development files >Group: Development/Other >Requires: %{name} = %{version}-%{release} >Recommends: nvidia-devel >= %{driver_ver} >Recommends: gcc-c++ > >%description devel >NVIDIA® CUDA⢠is a general purpose parallel computing architecture >that leverages the parallel compute engine in NVIDIA graphics >processing units (GPUs) to solve many complex computational problems >in a fraction of the time required on a CPU. It includes the CUDA >Instruction Set Architecture (ISA) and the parallel compute engine in >the GPU. To program to the CUDA⢠architecture, developers can, today, >use C++, one of the most widely used high-level programming languages, >which can then be run at great performance on a CUDA⢠enabled >processor. Support for other languages, like FORTRAN, Python or Java, >is available from third parties. > >This package contains the development files needed to build programs >that make use of CUDA. > >%package samples >Summary: NVIDIA CUDA Toolkit samples >Recommends: %{name}-devel = %{version}-%{release} > >%description samples >NVIDIA® CUDA⢠is a general purpose parallel computing architecture >that leverages the parallel compute engine in NVIDIA graphics >processing units (GPUs) to solve many complex computational problems >in a fraction of the time required on a CPU. It includes the CUDA >Instruction Set Architecture (ISA) and the parallel compute engine in >the GPU. To program to the CUDA⢠architecture, developers can, today, >use C++, one of the most widely used high-level programming languages, >which can then be run at great performance on a CUDA⢠enabled >processor. Support for other languages, like FORTRAN, Python or Java, >is available from third parties. > >This package contains numerous CUDA code samples (formerly CUDA SDK). > >%package -n nvidia-visual-profiler >Summary: NVIDIA Visual Profiler >Group: Development/Other >Requires: java >Obsoletes: nvidia-cuda-profiler < 4.0, nvidia-opencl-profiler < 4.0, nvidia-compute-profiler < 5.0 >Recommends: nvidia-devel >= %{driver_ver} >Recommends: %{name} = %{version}-%{release} > ># We don't strictly require NVIDIA CUDA Toolkit, because the profiler ># could be used to analyze CSV profile logs obtained elsewhere. > >%description -n nvidia-visual-profiler >NVIDIA® CUDA⢠is a general purpose parallel computing architecture >that leverages the parallel compute engine in NVIDIA graphics >processing units (GPUs) to solve many complex computational problems >in a fraction of the time required on a CPU. It includes the CUDA >Instruction Set Architecture (ISA) and the parallel compute engine in >the GPU. To program to the CUDA⢠architecture, developers can, today, >use C++, one of the most widely used high-level programming languages, >which can then be run at great performance on a CUDA⢠enabled >processor. Support for other languages, like FORTRAN, Python or Java, >is available from third parties. > >This package contains NVIDIA Visual Profiler for CUDA and OpenCL. > >%package -n nvidia-nsight >Summary: NVIDIA Nsight IDE >Group: Development/Other >Requires: java >Recommends: nvidia-devel >= %{driver_ver} > ># We don't strictly require NVIDIA CUDA Toolkit, because Nsight IDE ># could be used to develop CUDA programs on a remote node. > >%description -n nvidia-nsight >NVIDIA® CUDA⢠is a general purpose parallel computing architecture >that leverages the parallel compute engine in NVIDIA graphics >processing units (GPUs) to solve many complex computational problems >in a fraction of the time required on a CPU. It includes the CUDA >Instruction Set Architecture (ISA) and the parallel compute engine in >the GPU. To program to the CUDA⢠architecture, developers can, today, >use C++, one of the most widely used high-level programming languages, >which can then be run at great performance on a CUDA⢠enabled >processor. Support for other languages, like FORTRAN, Python or Java, >is available from third parties. > >This package contains Nsight Eclipse Edition, a full-featured CUDA IDE. > >%prep >%setup -q -T -c %{name}-%{version} > >%build ># Nothing to do > >%install >%__install -d -m 755 %{buildroot}%{_usr} >%__install -d -m 755 %{buildroot}%{_datadir}/%{name} >%__install -d -m755 %{buildroot}%{_datadir}/applications >%__install -d -m755 %{buildroot}%{_docdir}/%{name}-devel > >bash %SOURCE0 --tar xf -C . >./run_files/cuda-linux.%{version}-%{run_ver}.run --tar xf -C %{buildroot}%{_usr} >pushd %{buildroot}%{_usr} > patch -p0 < %{_sourcedir}/cuda-nsightcompute-fix-smem.patch >popd > >%__rm -rf %{buildroot}%{_usr}/lib >%__rm -rf %{buildroot}%{_usr}/extras/CUPTI/lib ># Fix nvcc.profile for current path >sed -i 's/lib:/lib64:/g' %{buildroot}%{_bindir}/nvcc.profile >sed -i 's/lib\//lib64\//g' %{buildroot}%{_bindir}/nvcc.profile ># (tmb) restore libdevice >sed -i 's/lib64device/libdevice/g' %{buildroot}%{_bindir}/nvcc.profile > > ># Move compiler components from /usr/nvvm to libdir >%__mv %{buildroot}%{_usr}/nvvm %{buildroot}%{_libdir}/ ># Fix nvcc.profile to reflect the move >sed -i 's/nvvm/%{_lib}\/nvvm/g' %{buildroot}%{_bindir}/nvcc.profile > ># move version.txt to devel doc >%__mv %{buildroot}%{_usr}/version.txt %{buildroot}%{_docdir}/%{name}-devel/ > ># Unpack samples (SDK) >./run_files/cuda-samples.%{version}-%{run_ver}-linux.run --tar xf -C %{buildroot}%{_datadir}/%{name} > ># move nvml examples files to samples >%__mv %{buildroot}%{_usr}/nvml %{buildroot}%{_datadir}/%{name}/samples/ > ># Fix samples path >find %{buildroot}%{_datadir}/%{name}/samples -type f -name Makefile -exec sed -i 's@/usr/local/cuda@%_usr@g' {} \; -exec echo "Fix path in " {} \; > ># Remove duplicates (these will be shipped with -devel) >%__rm -rf %{buildroot}%{_datadir}/%{name}/sdk/{doc,tools} >%__rm -rf %{buildroot}%{_datadir}/%{name}/sdk/Documentation.html >%__rm -rf %{buildroot}%{_usr}/InstallUtils.pm > >%__rm -f %{buildroot}%{_datadir}/%{name}/install-sdk-linux.pl >%__rm -rf %{buildroot}%{_usr}/install-linux.pl >%__rm -rf %{buildroot}%{_usr}/uninstall_cuda.pl > >%__mv %{buildroot}%{_usr}/doc/* %{buildroot}%{_docdir}/%{name}-devel/ >%__rm -r %{buildroot}%{_usr}/doc >%__mv %{buildroot}%{_usr}/src %{buildroot}%{_datadir}/%{name} >%__mv %{buildroot}%{_usr}/libnvvp %{buildroot}%{_libdir}/nvvp >%__mv %{buildroot}%{_usr}/libnsight %{buildroot}%{_libdir}/nsight >%__mv %{buildroot}%{_usr}/EULA.txt %{buildroot}%{_docdir}/%{name}-devel/ >%__mv %{buildroot}%{_usr}/CUDA_Toolkit_Release_Notes.txt %{buildroot}%{_docdir}/%{name}-devel/ >%__mv %{buildroot}%{_usr}/{extras,tools} %{buildroot}%{_datadir}/%{name} > ># dont ship gdb files >%__rm -rf %{buildroot}%_datadir/gdb > ># Remove bundled JRE and fix paths for Java >%__rm -rf %{buildroot}%{_usr}/jre >sed -i 's|\.\./jre/bin/java|%{_jvmdir}/jre/bin/java|g' %{buildroot}%{_libdir}/nvvp/nvvp.ini >sed -i 's|\.\./jre/bin/java|%{_jvmdir}/jre/bin/java|g' %{buildroot}%{_libdir}/nsight/nsight.ini > ># dont ship OpenCL files, we already ship them as separate packages >%__rm -rf %{buildroot}/%{_includedir}/CL >%__rm -rf %{buildroot}/%{_libdir}/libOpenCL.so* > >sed -i 's|$CUDA_BIN/../libnsight/nsight|%{_libdir}/nsight/nsight|g' %{buildroot}%{_bindir}/nsight >sed -i 's|$CUDA_BIN/../libnvvp/nvvp|%{_libdir}/nvvp/nvvp|g' %{buildroot}%{_bindir}/nvvp > >for S in 16 24 32 48 64 128 192 256; do > %__install -d -m755 %{buildroot}%{_iconsdir}/hicolor/$S\x$S/apps > convert -scale $S\x$S %{buildroot}/%{_libdir}/nvvp/icon.xpm %{buildroot}%{_iconsdir}/hicolor/$S\x$S/apps/nvvp.png > convert -scale $S\x$S %{buildroot}/%{_libdir}/nsight/icon.xpm %{buildroot}%{_iconsdir}/hicolor/$S\x$S/apps/nsight.png >done > >%__install -m644 %{SOURCE10} %{buildroot}%{_datadir}/applications/ >%__install -m644 %{SOURCE11} %{buildroot}%{_datadir}/applications/ >%__install -D -m 755 %SOURCE2 %{buildroot}%{_sysconfdir}/init.d/nvidia > ># Don't prevent the use of gcc 5.4 >sed -i 's|__GNUC__ > 4|__GNUC__ > 5|g' %{buildroot}%{_includedir}/host_config.h >sed -i 's|__GNUC__ == 4|__GNUC__ == 5|g' %{buildroot}%{_includedir}/host_config.h >sed -i 's|__GNUC_MINOR__ > 8|__GNUC_MINOR__ > 4|g' %{buildroot}%{_includedir}/host_config.h > >%files >%_libdir/*.so.* >%_sysconfdir/init.d/* > >%files devel >%doc %{_docdir}/%{name}-devel/* >%_bindir/* >%exclude %_bindir/nvvp >%exclude %_bindir/nsight >%_libdir/*.so >%_libdir/*.a >%_includedir/* >%_libdir/nvvm/* >%_libdir/stubs/* >%_datadir/%{name}/* >%exclude %_datadir/%{name}/samples > >%files samples >%_datadir/%{name}/samples > >%files -n nvidia-visual-profiler >%_bindir/nvvp >%_libdir/nvvp/.eclipseproduct >%_libdir/nvvp/* >%_datadir/applications/nvvp.desktop >%_iconsdir/hicolor/*/apps/nvvp.png > >%files -n nvidia-nsight >%_bindir/nsight >%_libdir/nsight/.eclipseproduct >%_libdir/nsight/* >%_datadir/applications/nsight.desktop >%_iconsdir/hicolor/*/apps/nsight.png >%_prefix/nsightee_plugins/com.nvidia.cuda.repo-*-SNAPSHOT.zip >%_prefix/NsightCompute-1.0
%define __jar_repack %nil %define driver_ver 410.48 %define run_ver 24817639 %define cuda_major 10.0 %define _enable_debug_packages %{nil} %define debug_package %{nil} Summary: NVIDIA CUDA runtime libraries Name: nvidia-cuda-toolkit Version: 10.0.130 Release: %mkrel 1 Source0: https://developer.nvidia.com/compute/cuda/%{cuda_major}/Prod/local_installers/cuda_%{version}_%{driver_ver}_linux Source2: nvidia Source10: nvvp.desktop Source11: nsight.desktop Patch0: cuda-nsightcompute-fix-smem.patch License: Freeware Group: Development/Other Url: http://www.nvidia.com/cuda/ Recommends: nvidia >= %{driver_ver} BuildRequires: imagemagick BuildRequires: jpackage-utils ExclusiveArch: x86_64 # We don't require installation of the NVIDIA graphics drivers so that # folks can do CUDA development on systems without NVIDIA hardware. # A library, libcudainj.so, was introduced in CUDA 4.1, which depends # on libcuda.so. It is not needed to compile CUDA programs, though. # python(abi) auto-require is triggered by runant.py script somewhere # inside Eclipse plugins used by NVVP. %global __requires_exclude libcuda.so.1|devel\\(libcuda\\)|devel\\(libcuda\\(64bit\\)\\)|python\\(abi\\) %global __provides_exclude libcairo.so.2 %description NVIDIA® CUDA⢠is a general purpose parallel computing architecture that leverages the parallel compute engine in NVIDIA graphics processing units (GPUs) to solve many complex computational problems in a fraction of the time required on a CPU. It includes the CUDA Instruction Set Architecture (ISA) and the parallel compute engine in the GPU. To program to the CUDA⢠architecture, developers can, today, use C++, one of the most widely used high-level programming languages, which can then be run at great performance on a CUDA⢠enabled processor. Support for other languages, like FORTRAN, Python or Java, is available from third parties. This package contains the libraries and attendant files needed to run programs that make use of CUDA. %package devel Summary: NVIDIA CUDA Toolkit development files Group: Development/Other Requires: %{name} = %{version}-%{release} Recommends: nvidia-devel >= %{driver_ver} Recommends: gcc-c++ %description devel NVIDIA® CUDA⢠is a general purpose parallel computing architecture that leverages the parallel compute engine in NVIDIA graphics processing units (GPUs) to solve many complex computational problems in a fraction of the time required on a CPU. It includes the CUDA Instruction Set Architecture (ISA) and the parallel compute engine in the GPU. To program to the CUDA⢠architecture, developers can, today, use C++, one of the most widely used high-level programming languages, which can then be run at great performance on a CUDA⢠enabled processor. Support for other languages, like FORTRAN, Python or Java, is available from third parties. This package contains the development files needed to build programs that make use of CUDA. %package samples Summary: NVIDIA CUDA Toolkit samples Recommends: %{name}-devel = %{version}-%{release} %description samples NVIDIA® CUDA⢠is a general purpose parallel computing architecture that leverages the parallel compute engine in NVIDIA graphics processing units (GPUs) to solve many complex computational problems in a fraction of the time required on a CPU. It includes the CUDA Instruction Set Architecture (ISA) and the parallel compute engine in the GPU. To program to the CUDA⢠architecture, developers can, today, use C++, one of the most widely used high-level programming languages, which can then be run at great performance on a CUDA⢠enabled processor. Support for other languages, like FORTRAN, Python or Java, is available from third parties. This package contains numerous CUDA code samples (formerly CUDA SDK). %package -n nvidia-visual-profiler Summary: NVIDIA Visual Profiler Group: Development/Other Requires: java Obsoletes: nvidia-cuda-profiler < 4.0, nvidia-opencl-profiler < 4.0, nvidia-compute-profiler < 5.0 Recommends: nvidia-devel >= %{driver_ver} Recommends: %{name} = %{version}-%{release} # We don't strictly require NVIDIA CUDA Toolkit, because the profiler # could be used to analyze CSV profile logs obtained elsewhere. %description -n nvidia-visual-profiler NVIDIA® CUDA⢠is a general purpose parallel computing architecture that leverages the parallel compute engine in NVIDIA graphics processing units (GPUs) to solve many complex computational problems in a fraction of the time required on a CPU. It includes the CUDA Instruction Set Architecture (ISA) and the parallel compute engine in the GPU. To program to the CUDA⢠architecture, developers can, today, use C++, one of the most widely used high-level programming languages, which can then be run at great performance on a CUDA⢠enabled processor. Support for other languages, like FORTRAN, Python or Java, is available from third parties. This package contains NVIDIA Visual Profiler for CUDA and OpenCL. %package -n nvidia-nsight Summary: NVIDIA Nsight IDE Group: Development/Other Requires: java Recommends: nvidia-devel >= %{driver_ver} # We don't strictly require NVIDIA CUDA Toolkit, because Nsight IDE # could be used to develop CUDA programs on a remote node. %description -n nvidia-nsight NVIDIA® CUDA⢠is a general purpose parallel computing architecture that leverages the parallel compute engine in NVIDIA graphics processing units (GPUs) to solve many complex computational problems in a fraction of the time required on a CPU. It includes the CUDA Instruction Set Architecture (ISA) and the parallel compute engine in the GPU. To program to the CUDA⢠architecture, developers can, today, use C++, one of the most widely used high-level programming languages, which can then be run at great performance on a CUDA⢠enabled processor. Support for other languages, like FORTRAN, Python or Java, is available from third parties. This package contains Nsight Eclipse Edition, a full-featured CUDA IDE. %prep %setup -q -T -c %{name}-%{version} %build # Nothing to do %install %__install -d -m 755 %{buildroot}%{_usr} %__install -d -m 755 %{buildroot}%{_datadir}/%{name} %__install -d -m755 %{buildroot}%{_datadir}/applications %__install -d -m755 %{buildroot}%{_docdir}/%{name}-devel bash %SOURCE0 --tar xf -C . ./run_files/cuda-linux.%{version}-%{run_ver}.run --tar xf -C %{buildroot}%{_usr} pushd %{buildroot}%{_usr} patch -p0 < %{_sourcedir}/cuda-nsightcompute-fix-smem.patch popd %__rm -rf %{buildroot}%{_usr}/lib %__rm -rf %{buildroot}%{_usr}/extras/CUPTI/lib # Fix nvcc.profile for current path sed -i 's/lib:/lib64:/g' %{buildroot}%{_bindir}/nvcc.profile sed -i 's/lib\//lib64\//g' %{buildroot}%{_bindir}/nvcc.profile # (tmb) restore libdevice sed -i 's/lib64device/libdevice/g' %{buildroot}%{_bindir}/nvcc.profile # Move compiler components from /usr/nvvm to libdir %__mv %{buildroot}%{_usr}/nvvm %{buildroot}%{_libdir}/ # Fix nvcc.profile to reflect the move sed -i 's/nvvm/%{_lib}\/nvvm/g' %{buildroot}%{_bindir}/nvcc.profile # move version.txt to devel doc %__mv %{buildroot}%{_usr}/version.txt %{buildroot}%{_docdir}/%{name}-devel/ # Unpack samples (SDK) ./run_files/cuda-samples.%{version}-%{run_ver}-linux.run --tar xf -C %{buildroot}%{_datadir}/%{name} # move nvml examples files to samples %__mv %{buildroot}%{_usr}/nvml %{buildroot}%{_datadir}/%{name}/samples/ # Fix samples path find %{buildroot}%{_datadir}/%{name}/samples -type f -name Makefile -exec sed -i 's@/usr/local/cuda@%_usr@g' {} \; -exec echo "Fix path in " {} \; # Remove duplicates (these will be shipped with -devel) %__rm -rf %{buildroot}%{_datadir}/%{name}/sdk/{doc,tools} %__rm -rf %{buildroot}%{_datadir}/%{name}/sdk/Documentation.html %__rm -rf %{buildroot}%{_usr}/InstallUtils.pm %__rm -f %{buildroot}%{_datadir}/%{name}/install-sdk-linux.pl %__rm -rf %{buildroot}%{_usr}/install-linux.pl %__rm -rf %{buildroot}%{_usr}/uninstall_cuda.pl %__mv %{buildroot}%{_usr}/doc/* %{buildroot}%{_docdir}/%{name}-devel/ %__rm -r %{buildroot}%{_usr}/doc %__mv %{buildroot}%{_usr}/src %{buildroot}%{_datadir}/%{name} %__mv %{buildroot}%{_usr}/libnvvp %{buildroot}%{_libdir}/nvvp %__mv %{buildroot}%{_usr}/libnsight %{buildroot}%{_libdir}/nsight %__mv %{buildroot}%{_usr}/EULA.txt %{buildroot}%{_docdir}/%{name}-devel/ %__mv %{buildroot}%{_usr}/CUDA_Toolkit_Release_Notes.txt %{buildroot}%{_docdir}/%{name}-devel/ %__mv %{buildroot}%{_usr}/{extras,tools} %{buildroot}%{_datadir}/%{name} # dont ship gdb files %__rm -rf %{buildroot}%_datadir/gdb # Remove bundled JRE and fix paths for Java %__rm -rf %{buildroot}%{_usr}/jre sed -i 's|\.\./jre/bin/java|%{_jvmdir}/jre/bin/java|g' %{buildroot}%{_libdir}/nvvp/nvvp.ini sed -i 's|\.\./jre/bin/java|%{_jvmdir}/jre/bin/java|g' %{buildroot}%{_libdir}/nsight/nsight.ini # dont ship OpenCL files, we already ship them as separate packages %__rm -rf %{buildroot}/%{_includedir}/CL %__rm -rf %{buildroot}/%{_libdir}/libOpenCL.so* sed -i 's|$CUDA_BIN/../libnsight/nsight|%{_libdir}/nsight/nsight|g' %{buildroot}%{_bindir}/nsight sed -i 's|$CUDA_BIN/../libnvvp/nvvp|%{_libdir}/nvvp/nvvp|g' %{buildroot}%{_bindir}/nvvp for S in 16 24 32 48 64 128 192 256; do %__install -d -m755 %{buildroot}%{_iconsdir}/hicolor/$S\x$S/apps convert -scale $S\x$S %{buildroot}/%{_libdir}/nvvp/icon.xpm %{buildroot}%{_iconsdir}/hicolor/$S\x$S/apps/nvvp.png convert -scale $S\x$S %{buildroot}/%{_libdir}/nsight/icon.xpm %{buildroot}%{_iconsdir}/hicolor/$S\x$S/apps/nsight.png done %__install -m644 %{SOURCE10} %{buildroot}%{_datadir}/applications/ %__install -m644 %{SOURCE11} %{buildroot}%{_datadir}/applications/ %__install -D -m 755 %SOURCE2 %{buildroot}%{_sysconfdir}/init.d/nvidia # Don't prevent the use of gcc 5.4 sed -i 's|__GNUC__ > 4|__GNUC__ > 5|g' %{buildroot}%{_includedir}/host_config.h sed -i 's|__GNUC__ == 4|__GNUC__ == 5|g' %{buildroot}%{_includedir}/host_config.h sed -i 's|__GNUC_MINOR__ > 8|__GNUC_MINOR__ > 4|g' %{buildroot}%{_includedir}/host_config.h %files %_libdir/*.so.* %_sysconfdir/init.d/* %files devel %doc %{_docdir}/%{name}-devel/* %_bindir/* %exclude %_bindir/nvvp %exclude %_bindir/nsight %_libdir/*.so %_libdir/*.a %_includedir/* %_libdir/nvvm/* %_libdir/stubs/* %_datadir/%{name}/* %exclude %_datadir/%{name}/samples %files samples %_datadir/%{name}/samples %files -n nvidia-visual-profiler %_bindir/nvvp %_libdir/nvvp/.eclipseproduct %_libdir/nvvp/* %_datadir/applications/nvvp.desktop %_iconsdir/hicolor/*/apps/nvvp.png %files -n nvidia-nsight %_bindir/nsight %_libdir/nsight/.eclipseproduct %_libdir/nsight/* %_datadir/applications/nsight.desktop %_iconsdir/hicolor/*/apps/nsight.png %_prefix/nsightee_plugins/com.nvidia.cuda.repo-*-SNAPSHOT.zip %_prefix/NsightCompute-1.0
View Attachment As Raw
Actions:
View
Attachments on
bug 24411
: 10794 |
10795
|
10796
|
10801
|
10804
|
10805
|
10806
|
10811
|
10812
|
10813
|
10814
|
10815
|
10817
|
10818
|
10819
|
10822
|
10823
|
10824
|
10825
|
10826
|
10827
|
10828
|
10829
|
10831
|
10832
|
10833
|
10835
|
10837
|
10839
|
10869
|
10870
|
10871
|
10872